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Introduction

1.1 Goals and origins of #, optimal control

Most engineering undergraduates are taught to design proportional-integral-deriva-
tive (PID) compensators using a variety of different frequency response techniques.
With the help of a little laboratory experience, students soon realize that a typical
design study involves juggling with conflicting design objectives such as the gain
margin and the closed-loop bandwidth until an acceptable controller is found. In
many cases these “classical” controller design techniques lead to a perfectly satis-
factory solution and more powerful tools hardly seem necessary. Difficulties arise
when the plant dynamics are complex and poorly modelled, or when the perfor-
mance specifications are particularly stringent. Even if a solution is eventually
found, the process is likely to be expensive in terms of design engineer’s time.

When a design team is faced with one of these more difficult problems, and
no solution seems forthcoming, there are two possible courses of action. These
are either to compromise the specifications to make the design task easier, or to
search for more powerful design tools. In the case of the first option, reduced
performance is accepted without ever knowing if the original specifications could
have been satisfied, as classical control design methods do not address existence
questions. In the case of the second option, more powerful design tools can only
help if a solution exists.

Any progress with questions concerning achievable performance limits and the
existence of satisfactory controllers is bound to involve some kind of optimization
theory. If, for example, it were possible to optimize the settings of a PID regulator,
the design problem would either be solved or it would become apparent that the
specifications are impossible to satisfy (with a PID regulator). We believe that
answering existence questions is an important component of a good design method-
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ology. One does not want to waste time trying to solve a problem that has no
solution, nor does one want to accept specification compromises without knowing
that these are necessary. A further benefit of optimization is that it provides an
absolute scale of merit against which any design can be measured—if a design is
already all but perfect, there is little point in trying to improve it further.

The aim of this book is to develop a theoretical framework within which one
may address complex design problems with demanding specifications in a systematic
way.

Wiener-Hopf-Kalman optimal control

The first successes with control system optimization came in the 1950s with the
introduction of the Wiener-Hopf-Kalman (WHK) theory of optimal control.! At
roughly the same time the United States and the Soviet Union were funding a
massive research program into the guidance and maneuvering of space vehicles. As
it turned out, the then new optimal control theory was well suited to many of the
control problems that arose from the space program. There were two main reasons
for this:

1. The underlying assumptions of the WHK theory are that the plant has a
known linear (and possibly time-varying) description, and that the exoge-
nous noises and disturbances impinging on the feedback system are stochastic
in nature, but have known statistical properties. Since space vehicles have
dynamics that are essentially ballistic in character, it is possible to develop
accurate mathematical models of their behavior. In addition, descriptions for
external disturbances based on white noise are often appropriate in aerospace
applications. Therefore, at least from a modelling point of view, the WHK
theory and these applications are well suited to each other.

2. Many of the control problems from the space program are concerned with
resource management. In the 1960s, aerospace engineers were interested in
minimum fuel consumption problems such as minimizing the use of retro-
rockets. One famous problem of this type was concerned with landing the
lunar excursion module with a minimum expenditure of fuel. Performance
criteria of this type are easily embedded in the WHK framework that was
specially developed to minimize quadratic performance indices.

Another revolutionary feature of the WHK theory is that it offers a true synthesis
procedure. Once the designer has settled on a quadratic performance index to be
minimized, the WHK procedure supplies the (unique) optimal controller without
any further intervention from the designer. In the euphoria that followed the intro-
duction of optimal control theory, it was widely believed that the control system

Linear Quadratic Gaussian (LQG) optimal control is the term now most widely used for this
type of optimal control.
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designer had finally been relieved of the burdensome task of designing by trial and
error. As is well known, the reality turned out to be quite different.

The wide-spread success of the WHK theory in aerospace applications soon led
to attempts to apply optimal control theory to more mundane industrial problems.
In contrast to experience with aerospace applications, it soon became apparent
that there was a serious mismatch between the underlying assumptions of the WHK
theory and industrial control problems. Accurate models are not routinely available
and most industrial plant enginzers have no idea as to the statistical nature of the
external disturbances impinging on their plant. After a ten year re-appraisal of the
status of multivariable control theory, it became clear that an optimal control theory
that deals with the question of plant modelling errors and external disturbance
uncertainty was required.

Worst-case control and H,, optimization

‘He optimal control is a frequency-domain optimization and synthesis theory that
was developed in response to the need for a synthesis procedure that ezplicitly
addresses questions of modelling errors. The basic philosophy is to treat the worst
case scenario: if you don’t know what you are up against, plan for the worst and
optimize. For such a framework to be useful, it must have the following properties:

1. It must be capable of dealing with plant modelling errors and unknown dis-
turbances.

2. It should represent a natural extension to existing feedback theory, as this will
facilitate an easy transfer of intuition from the classical setting.

3. It must be amenable to meaningful optimization.
4. It must be able to deal with multivariable problems.

In this chapter, we will introduce the infinity norm and H., optimal control with the
aid of a sequence of simple single-loop examples. We have carefully selected these
in order to minimize the amount of background mathematics required of the reader
in these early stages of study; all that is required is a familiarity with the mazimum
modulus principle. Roughly speaking, this principle says that if a function f (of a
complex variable) is analytic inside and on the boundary of some domain D, then
the maximum modulus (magnitude) of the function f occurs on the boundary of the
domain D. For example, if a feedback system is closed-loop stable, the maximum
of the modulus of the closed-loop transfer function over the closed right-half of the
complex plane will always occur on the imaginary axis.

To motivate the introduction of the infinity norm, we consider the question
of robust stability optimization for the feedback system shown in Figure 1.1. The
transfer function g represents a nominal linear, time-invariant model of an open-loop
system and the transfer function k represents a linear, time-invariant controller to be
designed. If the “true” system is represented by (1+ &)g, we say that the modelling
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N
g

Figure 1.1: The problem of robust stability optimization.

error is represented by a multiplicative perturbation & at the plant output. For
this introductory analysis, we assume that & is an unknown linear, time-invariant
system.
Since
= (1 - gk)_lgkws

the stability properties of the system given in Figure 1.1 are the same as those given
in Figure 1.2, in which
h=(1-gk) 'gk.

If the perturbation § and the nominal closed-loop system given by h are both

Figure 1.2: The small gain problem.

stable, the Nyquist criterion says that the closed-loop system is stable if and only
if the Nyquist diagram of hé does not encircle the +1 point. We use the +1 point
rather than the —1 point because of our positive feedback sign convention. Since
the condition :

sup |h(jw)d(jw)| < 1. (1.1.1)

ensures that the Nyquist diagram of hd does not encircle the +1 point, we conclude
that the closed-loop system is stable provided (1.1.1) holds.



1.1 GOALS AND ORIGINS OF Ho, OPTIMAL CONTROL 5

Since 4 is unknown, it makes sense to replace (1.1.1) with an alternative sufficient
condition for stability in which h and & are separated. We could for example test
the condition

sup |h(jw)|sup [6(jw)| < 1.
If 4 is stable and bounded in magnitude, so that

sup[§(jw)| = M,

the feedback loop given in Figure 1.1 will be stable provided a stabilizing controller
can be found such that 1
h(j —.
sup [h(jw)| < 37
The quantity sup,, |h(jw)| satisfies the axioms of a norm, and is known as the
infinity norm. Specifically,

[”lleo = sup |h(jw)|.

Electrical engineers will immediately recognize ||h|| as the highest gain value on a
Bode magnitude plot. The quantity || - || is a norm, since it satisfies the following
axioms:

1. ||h|lec > 0 with ||h|lcc = 0 if and only if h = 0.
2. |ah|leo = |a]||h||eo for all scalars a.

3. [lh+9llco < lIAlloo + llgllco-

In addition, || - || satisfies
L |lhgllee < lIRllcollgllco-

The fourth property is the crucial submultiplicative property which is central to all
the robust stability and robust performance work to be encountered in this book.
Note that not all norms have this fourth property.

With this background, the optimal robust stability problem is posed as one
of finding a stabilizing controller k that minimizes ||(1 — gk)—lgkllw. Note that
k = 0 gives ||(1 — gk) ' gkl|lco = 0 and is therefore optimal in this sense provided the
plant itself is stable. Thus, when the plant is stable and there are no performance
requirements other than stability, the optimal course of action is to use no feedback
at all! When k = 0 is not allowed because the plant is unstable, the problem is more
interesting and the optimal stability margin and the optimal controller are much
harder to find. We will return to the analysis of this type of problem in Section 1.4.

In order to lay the groundwork for our analysis of optimal disturbance attenu-
ation and optimal stability robustness, we consider the optimal command response
prcblem. This problem is particularly simple because it contains no feedback. De-
spite this, it contains many of the essential mathematical features of more difficult
(feedback) problems.
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1.2 Optimizing the command response

As an introduction to the use of the infinity norm in control system optimization, we
analyze the design of reference signal prefilters in command tracking applications.
This is our first example of an ‘H., optimal controller synthesis problem.

Figure 1.3: Command response optimization.

In the configuration illustrated in Figure 1.3, we suppose that the plant model
g is a given stable rational transfer function and that h is a given stable rational
transfer function with desired command response properties. The design task is
to find a stable rational prefilter with transfer function f such that ||h — gf||c is
minimized. An unstable prefilter is unacceptable in practical applications because
it results in unbounded control signals and actuator saturation.

In the case that g has no zeros in the closed-right-half plane, the solution is easy
since we may simply set f = g~'h. If g has right-half-plane zeros, however, the
plant inverse leads to an unstable prefilter unless the right-half-plane poles of g—!
happen to be cancelled by zeros of h. Thus, when g has right-half-plane zeros, the
requirement that the prefilter be stable forces us to accept some error between g f
and h which we denote

e=h-gf. (1.2.1)

This gives
F=g'h-e). (1.2.2)
If the right-half-plane zeros of g are z;,2,..., 2, and are of multiplicity one, the

prefilter will be stable if and only if
e(z;) = h(z), 1=1,2,...,m. (1.2.3)

This is because the unstable poles of g=! will be cancelled by the zeros of h — e.
The conditions given in (1.2.3) are called interpolation constraints. Any error
system e resulting from a stable prefilter must satisfy the conditions (1.2.3) and,
conversely, the satisfaction of these constraints ensures that all the right-half-plane
poles of g~! will be cancelled by zeros of h — e when forming the prefilter. The
optimization problem is to find a stable transfer function e of minimum infinity
norm such that the interpolation constraints given in (1.2.3) are satisfied. This
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is an example of a Nevanlinna-Pick interpolation problem. A general solution to
problems of this type is complicated and was found early this century. Once the
optimal error function is found, f follows by back substitution using (1.2.2). We
shall now consolidate these ideas with a numerical example.

Example 1.2.1. Suppose g and h are given by

s=1 s+1

= ., h= .
9 (s ¥ 2) (s ¥ 3)
The transfer function g has a single zero at s = 1, so there is a single interpolation
constraint given by
s+1

1) = ==,

e(1) (s + 3) 2

Since e is required to be stable, the maximum modulus principle ensures that

1

lellc = sup e(s)]

s=jw

sup |e(s)|
R.(s)>0

le(1)] =

v

1

5

The minimum infinity norm interpolating function is therefore the constant function
e = ; and the associated norm is ||e]|o = 3. Back substitution using (1.2.2) yields

f= s+2 s+1 1) 1/s+2
T \s-1/\s+3 2) 2\s+3)" v
Interpolating a single data point is particularly simple because the optimal inter-

polating function is a constant. Our next example, which contains two interpolation
constraints, shows that the general interpolation problem is far more complex.

Example 1.2.2. Consider the command response optimization problem in which

(s —1)(s-2) h— 2
(s+3)2 ° T 3(s+3)°

The transfer function g has right-half-plane zeros at 2; = 1 and 2, = 2, so we must
find a stable transfer function e of minimum norm such that:

1

e(l) = h(l) = 'é' = hl (1.2.4)

and
= hy. (1.2.5)
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It follows from the maximum modulus principle that any such e must satisfy

1 2 1
€lloc 2 max< =, — 3 = =,
lelle 2 max {3, 2} = 1
Since we have two values to interpolate, simply setting e = é will not do!
The Nevanlinna-Pick interpolation theory says that there is a stable interpolat-

ing function e with ||e||c <~ if and only if the Pick matriz given by
=-hi yP—hihy
_ 2 3
H(’Y) - [ 2_heh 72—h2 }
= r
is nonnegative definite. Since II(y;) > II(72) if 71 > 72, our desired optimal norm
is the largest value of v for which the Pick matrix II(y) is singular. Alternatively,

the optimal value of vy (call it vop) is the square root of the largest eigenvalue of
the symmetric matrix pencil
] [ h2  hihg
_ 2 3

72[ 2

hihy  hy
3 4

Carrying out this calculation gives v,,; ~ 0.207233. The Nevanlinna-Pick theory

also gives the optimal interpolating function as

e = a-—s
—'7opt a+s 3

2 Yopt + hi
Yopt — h;
~ 9.21699.

= B
PRI

with a given by

a = (in which 1 is either 1 or 2)

(It is easy to check that this e satisfies the interpolation constraints.) Notice that
the optimal interpolating function is a constant multiplied by a stable transfer
function with unit magnitude on the imaginary axis, which is a general property of

optimal interpolating functions. Since ||72|lec = 1, it is clear that ||e]jcc = Yopt.
Since f = g~!(h — e), it follows that the optimal prefilter is

s+3
f_%p'(s+a)' v

We conclude from this example that an increase in the number of interpolation
constraints makes the evaluation of the interpolating function much harder. Despite
this, the error function retains the “constant magnitude on the imaginary axis”
property associated with constants. We will not address (or require) a general
solution to the Nevanlinna-Pick interpolation problem, although the solution to
the H optimal control problem we shall develop also provides a solution to the
Nevanlinna-Pick interpolation problem. We shall say more about this in Chapter 6.
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1.3 Optimal disturbance attenuation

The aim of this section is to solve a simple #, control problem involving feedback by
recasting the optimal disturbance attenuation problem as an optimization problem
constrained by interpolation conditions.

In the system illustrated in Figure 1.4, it is assumed that the plant model g
is a given stable rational transfer function and that the frequency domain signal d
represents some unknown disturbance. The aim is to find a compensator k with the
following two properties:

1. It must stabilize the loop in a sense to be specified below.

2. It must minimize the infinity norm of the transfer function that maps d to y.

Figure 1.4: The disturbance attenuation problem.

If w =0, it is immediate from Figure 1.4 that

y = (1-gk)7'd
= (1+gk(l-gk)™")d,

and we note that the closed-loop transfer function is a nonlinear function of k. To
restore an affine parametrization of the type given in (1.2.1), we set

q=k(1-gk)™, (1.3.1)

which is the transfer function between the disturbance d and the plant input u. The
closed-loop mapping d to y may now be written as

y=(1+gq9)d, (1.3.2)

which is affine in the unknown parameter q. Before continuing, we need to introduce
the notion of internal stability and discover the properties required of q in order
that the resulting controller be internally stabilizing.
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1.3.1 Internal stability theory for stable plants

Definition 1.3.1 The feedback system given in Figure 1.4 is called internally stable
if each of the four transfer functions mapping w and d to u and y are stable.

If the feedback system in Figure 1.4 is internally stable, we say that k is an
internally-stabilizing controller for g.2

Internal stability is a more stringent stability requirement than the simple input-
output stability of closed-loop transfer functions, because it also bans all right-half-
plane pole-zero cancellations between cascaded subsystems within the feedback loop.

Example 1.3.1. The transfer functions g = (s:«ﬁ) and k = (££2) produce the
stable transfer function (1 — gk)™! = (j{ﬁ;) mapping d to y. However, the

closed-loop transfer function between d and u is k(1 —gk)~! = (%ﬁ)—sl), which

is unstable due to the closed-loop pole at the origin. We therefore conclude that the
system in Figure 1.4 is not internally stable for this particular plant and controller
combination, although it is input-output stable. v

We will now prove our first result on internal stability.

Lemma 1.3.1 The feedback loop in Figure 1.4 is internally stable if and only if

(L F (133

is stable.

Proof. It is immediate from Figure 1.4 that

= ky+w
y = gu+d,

or equivalently

w| | 1 =k u
d] | -9 1 y |
This gives
vl [ 1 k] w
y| | -g 1 d
and the result follows from Definition 1.3.1. [ |

2The terms internally-stabilizing controller and stabilizing controller are synonymous in this
book—internally-stabilizing controller is used to draw special attention to the requirement of
internal stability.
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We will now discover the properties required of the g-parameter defined in (1.3.1)
for internal stability in the stable plant case. Since

{-19 _lk]z[—lg (1)][(1) I:Zk}’

- R
[(1) lfgq][:] (1)]

on substituting from (1.3.1). Since g is assumed stable, it is apparent that

(L]

is stable if and only if g is stable. This gives the following result:

we get

Lemma 1.3.2 Suppose g is stable. Then k is an internally-stabilizing controller for
the feedback loop in Figure 1.4 if and only if ¢ = k(1—gk)™! is stable. Equivalently,
k is an internally-stabilizing controller if and only if k = q(1+qg)~! for some stable
q.

1.3.2 Solution of the disturbance attenuation problem

We may now return to the disturbance attenuation problem given in (1.3.2). Since
the transfer functions that maps d to y is given by

h=1+gq, (1.3.4)
one obtains
q= g_l(h - 1)‘
For the loop to be internally stable, we need to ensure that q is stable.
When g~! is stable we could, in principle, set ¢ = —g~!, since this results

in h = 0 and perfect disturbance attenuation. Unfortunately, such a q is not
achievable by a realizable controller since k has infinite gain. We may, however, use
g = —(1-¢€)g™! for an arbitrarily small e. This gives h = ¢ and

The controller is simply the negative of the inverse of the plant together with an
arbitrarily high gain factor. This is not a surprising conclusion, because high gain
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improves disturbance attenuation and we know from classical root locus theory that
a plant will be closed-loop stable for arbitrarily high gain if all the plant zeros are
in the open-left-half plane.

In the case that g~! is not stable, g will be stable if and only if

h(z)=1, i=1,2,...,m, (1.3.5)

for each zero, z;, of g such that R.(2;) > 0 (provided each of the zeros z; is of
multiplicity one). The optimal disturbance attenuation problem therefore requires
us to find a stable closed-loop transfer function h, of minimum infinity norm, which
satisfies the interpolation constraints given in (1.3.5). It follows from (1.3.4) that
the corresponding optimal q may be interpreted as the best stable approximate
inverse of —g, in the infinity norm sense.

It follows from the maximum modulus principle that the constraints h(z;) = 1
make it impossible to achieve ||h||c < 1 when the plant has a right-half-plane zero.
Since the plant is stable, we can set & = 0 to achieve y = d, which is optimal
in this case. The presence of a right-half-plane zero makes broadband disturbance
attenuation impossible.

If some spectral information is available about the disturbance d, one may be
able to improve the situation by introducing frequency response weighting. If d
is bandlimited, we could seek to minimize ||whl||s in which w is some low-pass
stable and minimum phase weighting function. If ||wh|l. < 1, it follows that
|h(jw)| < |w~1(jw)| for all real w. Since |w~!(jw)| is small at low frequency due
to the low pass nature of w, it follows that |h(jw)| will also be small there. The
idea is that |h(jw)| should be small over the range of frequencies for which |d(jw)|
is large. If we set h = wh, one obtains

ﬁ=w+wgq

and consequently that R
g=g 'w(h—w).
Under these conditions the g-parameter will be stable if and only if the interpolation

constraints R
h(z) = w(z;). 1=1,2,...,m,

are satisfied. If the right-half-plane plant zeros occur beyond the bandwidth of the
weighting function, the w(z;)’s will be small and it is at least possible that an h can
be found such that [|hlle < 1. Since [|hllo <1 = [A(jw)| < [w=(jw)] for all w,
we conclude that |h(jw)| < € whenever |w(jw)| > 1/e. Consequently, by designing
w, one can guarantee an appropriate level of disturbance attenuation provided a
controller exists such that [|h||c < 1. Conversely, if w(z;) > 1 for at least one z;,
we must have ||kl > 1 and |w(jw)| > 1/e no longer ensures |h(jw)| < €.
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Main points of the section

1. The optimal disturbance attenuation problem is a feedback prob-
lem and it is possible to replace the nonlinear parametrization of
h in terms of stabilizing controllers k, by an affine parametrization
of h in terms of stable functions q. So far we have only established
this fact for the stable plant case, but it is true in general.

2. The optimization problem requires us to find a stable transfer func-
tion h of minimum norm that satisfies the interpolation constraints
given in (1.3.5). This is a classical Nevanlinna-Pick interpolation
problem and satisfaction of the interpolation constraints guarantees
the internal stability of the feedback system. We note that mini-
mizing ||h||w is equivalent to finding a stable approximate inverse
of the plant.

3. If the plant has a right-half-plane zero, the constraint h(z;) = 1
makes it impossible to achieve ||h|s < 1 thereby attenuating un-
known disturbances. In this case the best one can do is set k = 0,
since this will give y = d. If some spectral information about the
disturbance is available, the situation may be improved if the right-
half-plane zero is outside the bandwidth in which there is significant
disturbance energy.

1.4 A robust stability problem

When a design team is faced with the problem of designing a controller to meet
certain closed-loop performance specifications, they will hardly ever have a perfect
model of the plant. As a consequence, the design process is complicated by the fact
that the controller has to be designed to operate satisfactorily for all plants in some
model set. The most fundamental of all design requirements is that of finding a
controller to stabilize all plants in some class; we call this the robust stabilization
problem. To set this problem up in a mathematical optimization framework, we
need to decide on some representation of the model error. If the nominal plant
model is g, we can use an additive representation of the model error by describing
the plant as g + é in which the stable transfer function § represents the unknown
dynamics; this is an alternative to the multiplicative description of model error
given in Section 1.1.

Let us consider the robust stabilization problem in which some nominal plant
model g is given, and we seek a stabilizing controller for all plants of the form g + &
in which the allowable ||6]|« is maximized. A controller that maximizes ||6]|oo is
optimally robust in the sense that it stabilizes the largest ball of plants with center
g. A block diagram of the set-up under consideration is given in Figure 1.5 and

z=(1-kg) 'kw.
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Figure 1.5: A robust stability problem.

If § and the nominal closed-loop system are stable, it follows from an earlier “small
gain” argument based on the Nyquist criterion that the perturbed closed loop will
also be stable provided

18]looll(1 = kg) ™ klleo < 1.

The optimal robustness problem therefore requires a stabilizing controller that min-
imizes ||(1 — kg) ™ k|| 0o-

As before, in the case that the plant is stable, the solution is trivially obtained
by setting k = 0; note, however, that k = 0 offers no protection against unstable
perturbations however small! Before substituting

q= (1 - kg)_1k1

we need the conditions on g that lead to a stable nominal closed-loop system. The
mere stability of q is not enough in the unstable plant case. Since

[1 -—k]'l=[ 1+qg q
-g 1 (1+q99)g l1+gq |’

it is clear that the nominal closed loop will be stable if and only if
1. g is stable,
2. gq is stable, and
3. (1 + qg)g is stable.

If g is stable and Condition 1 is satisfied, Conditions 2 and 3 follow automatically.
If (p1,pa,...,pm) are the right-half-plane poles of g, it follows from Condition 2
that internal stability requires satisfaction of the interpolation constraints

2. q(p;) =0,fori=1,2,...,m,
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while Condition 3 demands
3. (14+gq)(pi) =0,fori=1,2,...,m.

To keep things simple, we will assume for the present that each unstable pole has
multiplicity one and that Re(p;) > 0.

Since the closed-loop transfer function of interest is g, the solution of the robust
stabilization problem requires a stable ¢ of minimum infinity norm that satisfies
the interpolation constraints of Conditions 2’ and 3'.

As we will now show, it is possible to reformulate the problem so that there is
one, rather than two, interpolation constraints per right-half-plane pole. To effect
the reformulation, we introduce the completely unstable function®

o= ljl (g—f—:) (L4.1)

which has the property that |a(jw)| = 1 for all real w. If we define § := agq it
follows that:

L |lglles = [1dlloo-
2. If q is stable, so is q.

3. If q is stable, g(p;) = 0, because ¢ = G [ -, (%—:—_f)

4. 4(p;) = —(ag™")(p:) = (1 + qg)(pi) = 0.

In its new form, the robust stabilization problem is one of finding a stable § of
minimum infinity norm such that

Q(pl) = _(a’g-l)(pi) 1= 1’27 ey, (142)

which is yet another Nevanlinna-Pick interpolation problem . The corresponding
(optimal) controller may be found by back substitution as

k=(a+3dg)'q. (1.4.3)
Example 1.4.1. Suppose the plant is given by

_ s+2
T s+ D)(s-1)

Since there is a single right-half-plane pole at +1, it follows that the allpass function
given in equation (1.4.1) is
(14 s)
*= (1 -3

3Such functions are sometimes known as Blaschke products.
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in this particular case. As a conusequence
2
—ag! = (s+1) ,
(s+2)
and the interpolation condition follows from (1.4.2) as

~ - 4
(1) = —ag™|,_, =3
It is now immediate from the maximum modulus principle that ||§|l. > 4/3, so

that ¢ = 4/3 is optimal. Substitution into (1.4.3) yields

_4(s+1)

(3s+5)
as the optimal controller that will stabilize the closed-loop system for all stable &
such that |4l < 3/4. v

Our second robust stabilization example shows that it is impossible to robustly
stabilize a plant with a right-half-plane pole-zero pair that almost cancel. We expect
such a robust stability problem to be hard, because problems of this type have an
unstable mode that is almost uncontrollable.

Example 1.4.2. Consider the unstable plant

S —
g‘“(s_1>v a#lv

which has a zero at a. As with the previous example, we require

(1+s)
a =
1-s

-1 s+1
—ag = 5 —a .

The only interpolation constraint is therefore

which gives

2
l1-a

q(1) = —ag™t| _, =

Invoking the maximum modulus principle yields § = 2/(1 — a) as the optimal
interpolating function. Substitution into (1.4.3) gives

2

k= ——

l1+a
as the optimal controller. The closed loop will therefore be stable for all stable §
such that ||d]|oc < |(1 — @)/2|. From this we conclude that the stability margin
measured by the maximum allowable ||d||o vanishes as a — 1. v
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Our final example considers the robust stabilization of an integrator.

Example 1.4.3. Consider the case of
g=-.
s

At first sight this appears to be an awkward problem because the interpolation
constraint occurs at s = 0, and the allpass function in (1.4.1) degenerates to 1.
Suppose we ignore this difficulty for the moment and restrict our attention to con-
stant controllers given by k < 0. This gives

ks
s—k

g=(1-kg) k=

with

sk
s—k
= |kl

To solve the problem we observe that if we want to stabilize the closed loop for any
stable d such that ||d]|c < 1/€, we simply set k = —¢; e may be arbitrarily small! In
prcblems such as this one, which has an interpolation constraint on the imaginary
axis, it is not possible to achieve the infimal value of the norm. For any positive
number, we can achieve a closed-loop with that number as its infinity norm, but we
cannot achieve a closed-loop infinity norm of zero. v

(1 = kg) "kl

§=00

1.5 Concluding comments and references

We will now conclude this introductory chapter with a few remarks about the things
we have already learned and the things we still hope to achieve.

1. H control problems can be cast as constrained minimization problems. The
constraints come from an internal stability requirement and the object we
seek to minimize is the infinity norm of some closed-loop transfer function.
The constraints appear as interpolation constraints and stable closed-loop
transfer functions that satisfy the interpolation data may be found using the
classical Nevanlinna-Schur algorithm. This approach to control problems is
due to Zames [227] and is developed in Zames and Francis [228] and Kimura
[118]. In our examples we have exploited the fact that there is no need for the
Nevanlinna algorithm when there is only one interpolation constraint.

2. We will not be discussing the classical Nevanlinna-Pick-Schur theory on ana-
lytic interpolation in this book. The interested reader may find this material
in several places such as Garnett [69] and Walsh [207] for a purely function
theoretic point of view, and [53, 43, 44, 129, 221, 227, 228], for various appli-
cations of analytic interpolation to system theory.



18

INTRODUCTION

3. The reader may be puzzled as to why the interpolation theory approach to

Hoo

control problems is being abandoned at this early stage of our book.

There are several reasons for this:

(a)

Interpolation theoretic methods become awkward and unwieldy in the
multivariable case and in situations where interpolation with multiplic-
ities is required; if there are several interpolation constraints associated
with a single right-half-plane frequency point, we say that the problem
involves interpolation with multiplicities.

It is our opinion that interpolation theoretic methods are computation-
ally inferior to the state-space methods we will develop in later chapters
of the book. Computational issues become important in realistic design
problems in which one is forced to deal with systems of high order.

Frequency domain methods (such as interpolation theory) are restricted
to time-invariant problems. The state-space methods we will develop are
capable of treating linear time varying problems.

It is not easy to treat multitarget problems in an interpolation based
framework. To see this we cite one of many possible problems involving
robust stabilization with performance. Take the case of disturbance at-
tenuation with robust stability, in which we require a characterization of

the set
arg min [ (1-gk)~ }
kes| | k(1 —gk)™!

with S denoting the set of all stabilizing controllers. If the plant is stable,
we may introduce the g-parameter to obtain

o] +[1]d.

Problems of this type are not directly addressable via interpolation due

to the nonsquare nature of [ ? }; we will not pursue this point at this

oo

arg min
geH <

stage.

4. Solving each Ho, control problem from scratch, as we have done so far, is
a practice we will now dispense with. This approach is both effort intensive
and an intellectually clumsy way to proceed. Rather, we will develop a single
solution framework that captures many Mo, optimization problems of general
interest as special cases. A large part of the remainder of the book will
be devoted to the development of a comprehensive theory for multivariable,
multitarget problems.

5. The solutions to the problems we have considered so far have a common
theme. With the exception of the robust stabilization of an integrator, the
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magnitudes of the optimal closed-loop transfer functions are a constant func-
tion of frequency. It turns out that this is a general property of the solutions of
all single-input, single-output problems that are free of imaginary axis inter-
polation constraints. In each case, the optimal closed-loop transfer function
is a scalar multiple of a rational inner function. Inner functions are stable
allpass functions, and rational allpass functions have the form

m ﬁ""s
1
a=|| —
,-=1<Pi—8)

which we have already encountered. Since the poles and zeros of allpass
functions are symmetrically located about the imaginary axis, it is not hard to
see that they have the property |a(jw)| = 1 for all real w. The “flat. frequency
response” property of optimal closed-loop transfer functions is fundamental
in the design of frequency weighting functions.

1.6 Problems

Problem 1.1. Prove that || - ||« is a norm and that ||gh|lec < [|g]lcol|Pllco-

Problem 1.2. Consider the frequency weighted disturbance attenuation problem
of finding a stabilizing controller that minimizes ||w(1 — gk)™}|| . If

_(3m9) (st
9=\G+2) “\26s+1))°
in which « is real, show that when 0 < a < 2 there is no stabilizing controller such
that

(1 - gk)™'(jw)| < lw™ (jw)],  for all w.

Problem 1.3. Consider the command tracking problem in which

(s—1)2 ) 1
=(——" ), h=—
g ((s+2)(s+3) s+4
Show that the error e = h — g f must satisfy the interpolation constraints
1 de -1
W=5 GFW=3

The construction of such an e requires the solution of an interpolation problem with
derivative constraints.

Problem 1.4. Suppose an uncertain plant is described by g(1 + &) in which g is
a given unstable transfer function and § is a stable but otherwise unknown linear
perturbation bounded in magnitude by ||6]|e < a.
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1. Give an interpolation theoretic procedure for finding the optimal controller
that stabilizes every g(1 + &) of the type described and with a maximized.
(Hint: you need to introduce the stable minimum phase spectral factor m
that satisfies gg~ = mm~.)

2. Give two reasons why a must always be strictly less than one.

3. Supposeg = (ﬁ) Show that the largest achievable value of a is ey = %,

and that the corresponding controller is k = %

Problem 1.5. Suppose an uncertain plant is described by g + § in which g is
a given unstable transfer function and § is a stable but otherwise unknown linear
perturbation such that |§(jw)| < |w(jw)| for all w. The function w is a stable and
minimum phase frequency weight.
1. Show that k will stabilize all g + § with § in the above class provided it
stabilizes g and ||wk(1 — gk) | < 1.
2. Explain how to find a stabilizing controller that minimizes ||[wk(1—gk)™!||o.

3.Ifg = (%) and w = (i—j_’—};), find a controller (if one exists) that will

stabilize every g + 4 in which 4 is stable with |§(jw)| < |w(jw)] for all w.

Problem 1.6. Consider the multivariable command response optimization problem
in which the stable transfer function matrices G and H are given and a stable
prefilter F is required such that E = H — G'F is small in some sense.

1. If G is nonsingular for almost all s and F is to be stable, show that H — F
must have a zero at each right-half-plane zero of G, taking multiplicities into
account.

2. If all the right-half-plane zeros z;, i = 1,2,...,m, of G are of multiplicity
one, show that F is stable if and only if there exist vectors w; # 0 such that

w; [ H(z:) - E(z:) G(z:) | =0.

Conclude from this that multivariable problems have vector valued interpo-
lation constraints. What are they”
The relationship between vector interpolation and H, control is studied in detail
in Limebeer and Anderson [129] and Kimura [119].



