Preface

This book has been written for a first course in probability and was developed
from lectures given at the University of Illinois during the last five years.
Most of the students have been juniors, seniors, and beginning graduates,
from the fields of mathematics, engineering and physics. The only formal
prerequisite is calculus, but an additional degree of mathematical maturity
may be helpful.

In talking about nondiscrete probability spaces, it is dxﬂicult to avoid
measure-theoretic concepts. However, to develop extensive formal machinery
from measure theory before going into probability (as is done in most
graduate programs in mathematics) would be inappropriate for the particular
audience to whom the book is addressed. Thus I have tried to suggest, when
possible, the underlying measure-theoretic ideas, while emphasizing the
probabilistic way of thinking, which is likely to be quite novel to anyone
studying this subject for the first time.

The major field of application considered in the book is statistics (Chapter
8). In addition, some of the problems suggest connections with the physical
sciences. Chapters 1 to 5, and Chapter 8 will serve as the basis for a one-
semester or a two-quarter course covering both probability and statistics.
If probability alone is to be considered, Chapter 8 may be replaced by
Chapter 6 and Chapter 7, as time permits. An asterisk before a section or
a problem indicates material that I have normally omitted (without loss of
continuity), either because it involves subject matter that many of the
students have not been exposed to (for example, complex variables) or
because it represents too concentrated a dosage of abstraction.

A word to the instructor about notation. In the most popular terminology,
P{X < =} is written for the probability that the random variable X assumes
a value less than or equal to the number «. I tried this once in my class, and
I found that as the semester progressed, the capital X tended to become
smaller in the students’ written work, and the small  larger. The following
semester, I switched to the letter R for random variable, and this notation
is used throughout the book.
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Fairly detailed solutions to some of the problems (and numerical answers
to others) are given at the end of the book.

I hope that the book will provide an introduction to more advanced
courses in probability and real analysis and that it makes the abstract ideas
to be encountered later more meaningful. I also hope that nonmathematics
majors who come in contact with probability theory in their own areas find
the book useful. A brief list of references, suitable for future study, is given
at the end of the book.

I am grateful to the many students and colleagues who have influenced my
own understanding of probability theory and thus contributed to this book.

I also thank Mrs. Dee Keel for her superb typing, and the staff of Wiley
for its continuing interest and assistance.

Urbana, Illinois, 1969 Robert B. Ash
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Basic Concepts

1.1 INTRODUCTION

The origin of probability theory lies in physical observations associated with
games of chance. It was found that if an “‘unbiased’’ coin is tossed independ-
ently » times, where 7 is very large, the relative frequency of heads, that is, the
ratio of the number of heads to the total number of tosses, is very likely to
be very close to 1/2. Similarly, if a card is drawn from-a perfectly shuffled
deck and then is replaced, the deck is reshuffled, and the process is repeated
over and over again, there is (in some sense) convergence of the relative
frequency of spades to 1/4.

In the card experiment there are 52 possible outcomes when a smgle card
is drawn. There is no reason to favor one outcome over another (the principle
of “insufficient reason” or of “least astonishment’’), and so the early workers
in probability took as the probability of obtaining a spade the number of
favorable outcomes divided by the total number of outcomes, that is, 13/52
or 1/4.

This so-called “classical definition” of probability (the probability of an
event is the number of outcomes favorable to the event, divided by the total
number of outcomes, where all outcomes are equally likely) is first of all
restrictive (it considers only experiments with a finite number of outcomes)
and, more seriously, circular (no matter how you look at it, “equally likely”
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essentially means “equally probable,” and thus we are using the concept of
probability to define probability itself). Thus we cannot use this idea as the
basis of a mathematical theory of probability; however, the early proba-
bilists were not prevented from deriving many valid and useful results.

Similarly, an attempt at a frequency definition of probability will cause
trouble. If S, is the number of occurrences of an event in » independent
performances of an experiment, we expect physically that the relative fre-
quency S,/n should coverge to a limit; however, we cannot assert that the
limit exists in a mathematical sense. In the case of the tossing of an unbiased
coin, we expect that S,/n — 1/2, but a conceivable outcome of the process is
that the coin will keep coming up heads forever. In other words it is possible
that S,/n — 1, or that S,/n — any number between 0 and 1, or that S,/n
has no limit at all.

In this chapter we introduce the concepts that are to be used in the con-
struction of a mathematical theory of probability. The first ingredient we
need is a set Q, called the sample space, representing the collection of possible
outcomes of a random experiment. For example, if a coin is tossed once we
may take Q = {H, T}, where H corresponds to a head and T to a tail. If
the coin is tossed twice, this is a different experiment and we need a different
Q, say {HH, HT, TH, TT}; in this case one performance of the experiment
corresponds to two tosses of the coin.

If a single die is tossed, we may take Q to consist of six points, say Q =
{1,2,...,6}. However, another possible sample space consists of two
points, corresponding to the outcomes “N is even” and “N is odd,” where N
is the result of the toss. Thus different sample spaces can be associated with
the same experiment. The nature of the particular problem under considera-
tion will dictate which sample space is to be used. If we are interested, for
example, in whether or not N > 3 in a given performance of the experiment,
the second sample space, corresponding to “N even’ and “N odd,” will not
be useful to us.

In general, the only physical requirement on (Q is that a given performance
of the experiment must produce a result corresponding to exactly one of the
points of Q. We have as yet no mathematical requirements on Q; it is simply a
set of points,

Next we come to the notion of event. An “event” associated with a random
experiment corresponds to a question about the experiment that has a yes or
no answer, and this in turn is associated with a subset of the sample space.
For example, if a coin is tossed twice and Q = {HH, HT, TH, TT}, “the
number of heads is <1 will be a condition that either occurs or does not
occur in a given performance of the experiment. That is, after the experiment
is performed, the question “Is the number of heads < 1?” can be answered
yes or no. The subset of Q corresponding to a “yes” answer is 4 = {HT, TH,
TT}; that is, if the outcome of the experiment is HT, TH, or TT, the answer
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B = {first toss = second toss }

ar >
AT

Ficure 1.1.1 Coin-Tossing Experiment.

A = {number of heads <1}

to the question “Is the number of heads < 17 will be “yes,” and if the out-
come is HH, the answer will be “no.” Similarly, the subset of Q associated
with the “event” that the result of the first toss is the same as the result of the
second toss is B = {HH, I'T}.

Thus an event is defined as a subset of the sample space, that is, a collection
of points of the sample space. (We shall qualify this in the next section.)

Events will be denoted by capital letters at the beginning of the English
alphabet, such as 4, B, C, and so on. An event may be characterized by listing
all of its points, or equivalently by describing the conditions under which the
event will occur. For example, in the coin-tossing experiment just considered,
we write

A = {the number of heads is less than or equal to 1}

This expression is to be read as “A is the set consisting of those outcomes
which satisfy the condition that the number of heads is less than or equal to
1,” or, more simply, ““4 is the event that the number of heads is less than or
equal to 1.”” The event A consists of the points HT, TH, and TT; therefore
we write A = {HT, TH, TT}, which is to be read “A4 is the event consisting
of the points HT, TH, and T7.” As another example, if B is the event that
the result of the first toss is the same as the result of the second toss, we may
describe B by writing B = {first toss = second toss} or, equivalently,
B = {HH, TT} (see Figure 1.1.1).

Each point belonging to an event 4 is said to be favorable to A. The event
A will occur in a given performance of the experiment if and only if the
outcome of the experiment corresponds to one of the points of 4. The entire
sample space  is said to be the sure (or certain) event; if must occur on any
given performance of the experiment. On the other hand, the event consist-
ing of none of the points of the sample space, that is, the empty set @, is
called the impossible event; it can never occur in a given performance of the
experiment.

1.2 ALGEBRA OF EVENTS (BOOLEAN ALGEBRA)

Before talking about the assignment of probabilities to events, we introduce
some operations by which new events are formed from old ones. These
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operations correspond to the construction of compound sentences by use of
the connectives “or,” “and,”’ and ‘“‘not.” Let 4 and B be events in the same
sample space. Define the union of 4 and B (denoted by 4 U B) as the set
consisting of those points belonging to either A or B or both. (Unless other-
wise specified, the word “or”” will have, for us, the inclusive connotation.
‘In other words, the statement “p or ¢ will always mean “p or g or both.”)
Define the intersection of 4 and B, written 4 N B, as the set of points that
belong to both A and B. Define the complement of A, written A°, as the set of
points which do not belong to A.

» Example 1. Consider the experiment involving the toss of a single die,
with N = the result; take a sample space with six points corresponding to
N=1,2,3,4,5, 6. For convenience, label the points of the sample space

by the integers 1 through 6.
7
=
i

AUB ANB A°

A B A

FIGURE 1.2.1 Venn Diagrams.

: Let A = {N is even} and B={N>3}
Then
AUB={Nisevenor N >3} =1{2,3,4, 5, 6}
A N B={Niseven and N > 3} = {4, 6}

A° = {N is not even} = {1, 3, 5}

B = {Nisnot > 3} = {N <3} ={l,2} «

Schematic representations (called Venn diagrams) of unions, intersections,
and complements are shown in Figure 1.2.1.

Define the union of n events A;, A,, ..., A, (notation: 4, U+-- U4,
or U2, 4,) as the set consisting of those points which belong to af least one
of the events 4,, 4,, ..., A,. Similarly define the union of an infinite se-
quence of events 4,, A,, . . . as the set of points belonging to at least one of the
events Ay, 4,, ... (notation: 4, U 4, U -+, or U2, 4).

Define the intersection of n events A,, . . . , A, as the set of points belonging
to all of the events 4, . . . , A, (notation: 4; N Ay N -+ N A,,or N, 4).
Similarly define the intersection of an infinite sequence of events as the set of
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points belonging to all the events in the sequence (notation: 4, N 4, N+ -+,
or N2, 4,). In the above example, with 4 = {N is even} = {2, 4, 6},
B={N2>3}=1{3,4,5,6},C={N=1or N=5}= {1, 5}, we have

AVUBUC=Q, ANBNC=g
AUB UC=1{2,4,6U{l,2} U{L, 5 ={1,2,4,5,6}
4uvl)nH4 N BY]={1,2,4,5,6} N {4,6}° = {1, 2, 5}

Two events in a sample space are said to be mutually exclusive or disjoint
if 4 and B have no points in common, that is, if it is impossible that both 4
and B occur during the same performance of the experiment. In symbols,
A and B are mutually exclusive if 4 N B = @. In general the events 4;,
Aj, ..., A, are said to be mutually exclusive if no two of the events have a
point in common; that is, no more than one of the events can occur during

c
FIGURE1.22 ANBUC)=UANBUMUNO).

the same performance of the experiment. Symbolically, this condition may be
written
A, N4;=02  forisj

Similarly, infinitely many events 4,, 4,, . . . are said to be mutually exclusive if
A;NA4;= & fori#j. ‘

In some ways the algebra of events is similar to the algebra of real numbers,
with union corresponding to addition and intersection to multiplication. For
example, the commutative and associative properties hold.

AUB=BUA, AUBUC)=AUBUC
ANB=BNn4d, ANBNCO=UNBNC @121

Furthermore, we can prove that for events 4, B, and C in the same sample
space we have
ANBUO=ANBUMUNC) 1.2.2)

There are several Ways to establish this; for example, we may verify that the
sets of both the left and right sides of the equality above are represented by
the area in the Venn diagram of Figure 1.2.2.
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Another approach is to use the definitions of union and intersection to
show that the sets in question have precisely the same members; that is, we
show that any point which belongs to the set on the left necessarily belongs to
the set on the right, and conversely. To do this, we proceed as follows.

zeANBYUC)=>2z€Ad and zeBUC
=>axzcA and (xeBorze(C)

(The symbol => means “implies,”’ and <=>means “implies and is implied by.”)

Case 1. z€B. Then z€4 and 2z€B, so xeANB, so ze(ANB) U
4ncC).

Case 2. z€C. Then z€ 4 and z€C, so 264 NC, so xe(d NB)U
4 nC).

Thus zed N (B U C) => 2ze(ANBUANC); that is, 4 0
(BUC)< (A NB)U (4 NC). (The symbol < is read “is a subset of”’;
we say that 4; < A, provided that € 4, = « € 4,; see Figure 1.2.3. Notice
that, according to this definition, a set 4 is a subset of itself: 4 < 4.)

Conversely: Let re (A NBYU (A NC). ThenzedNBorzed NC.

Casel. z€6ANB. ThenzeB,soxeBUC soxed N(BUC).
Case2. zeANC. ThenxeC,sozeBUC sozedNBUCLC).

Thus (A "NB) U (A NC)<= AN (BYU C); hence
ANBUC)=ANBUUAUNC)
As another example we show that

(Al UAQU"'UAn)c=A1°nA2°ﬂ"'ﬂAn° (1.2-3)

Az

Ficure 1.2.3 4, < 4,.
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The steps are as follows.

2e(d, V- VU4 )Y<rdd, U---UA,

<= it is not the case that = belongs to at least one of
the 4,

<>z € none of the 4,
<z€ASf for all i

<reAdN---NAS
An identical argument shows that

o0

(C) A,.)° = N4 (1.2.4)

and similarly

n 4 n
(n A,.) U4 de (40 NA =AU U4’ (125

i=1 i=1

Also
(ﬁ A,.)° = U4 (1.2.6)
i=1 =1

The identities (1.2.3)—(1.2.6) are called the DeMorgan laws.
In many ways the algebra of events differs from the algebra of real numbers,
as some of the identities below indicate.

AVA=A AU A =Q
ANA=4 ANA =g
ANQ =4 AV@Z =4
AUuQ=Q ANGg =g ‘ (1.2.7)

Another method of verifying relations among events involves algebraic
manipulation, using the identities already derived. Four examples are given
below; in working out the identities, it may be helpful to write 4 U B as
A+ Band A N Bas AB.

. AUUANB) =4 (1.2.8)

PrOOF.
A+ AB=AQ 4+ AB=A(Q + B)=AQ =4

2. (AUBIN(AUC)=AUBNC) (1.2.9)
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PROOF.
(A+BA+C)=(A+ BA+ (4+ BC
= A4 + AB + AC + BC (note AB = BA)
= A(Q + B + C) + BC

= AQ + BC
= A+ BC
3. AV[ANB)Y]=Q (1.2.10)
PROOF. ‘
A4+ (ABf=A4+ A+ B =Q+ B°=Q
4, ANBYUANB YA NB)=AUBRB (1.2.11)
PROOF.
AB® + AB + A°B = AB°+ AB + AB + A°B [see (1.2.7)]
= A(B°+ B) + (4 + 4A°B
= AQ 4 QB
=A+ B

(see Figure 1.2.4).
As another example, let ) be the set of nonnegative real numbers. Let

4, = [0,1—1] ={xe9:ogxg1—l} n=12,..

n n
(This will be another common way of describing an event. It is to be read:
“A, is the set consisting of those points z in Q such that0 < # <1 — 1/n.”
If there is no confusion about what space {2 we are considering, we shall
simply write 4, = {#: 0 < 2 < 1 — 1/n}.) Then

U4, =10,1) = {z:0< s < 1}

n=1

FiGure 1.2.4 Venn Diagram Illustrating
(ANBYV((ANBVYMA°NB)=A4AUB.
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As an illustration of the DeMorgan laws,

(fJA,,)°=[o, 0° = [1, @) = {z: 2> 1}

n=1

A 4,0 ﬂ(l—— oo)=[1,oo)

n=1 n=1 n

(Notice that z > 1 — I/nforalln=1,2,...<>2 > 1.) Also

(ﬁ A,,)°= {0}° = (0, ) = {2: z > 0}

n=1

U4°,=0 (1—1;00) = (0, ®)

n=1 n=1 n

PROBLEMS

1.

An experiment involves choosing an integer N between 0 and 9 (the sample space
consists of the integers from 0 to 9, inclusive). Let 4 = {N < 5},B={3 <N <
7}, C = {N is even and N > 0}. List the points that belong to the following
events,

ANBNC, AV (BNCY, (4 v B)nCe, (ANnB)n[(4v 0]
Let A, B, and C be arbitrary events in the same sample space. Let D; be the
event that at least two of the events A, B, C occur; that is, D, is the set of points
common to at least two of the sets 4, B, C.

Let D, = {exactly two of the events 4, B, C occur}
= {at least one of the events 4, B, C occur}
D, = {exactly one of the events 4, B, C occur}
D; = {not more than two of the events 4, B, C occur}
Each of the events D, through Dj can be expressed in terms of 4, B, and C by
using unions, intersections, and complements. For example, D; = A U B U C.
Find suitable expressions for D;, Dy, D,, and D;.

A public opinion poll (circa 1850) consisted of the following three questions:
(a) Are you a registered Whig?
(b) Do you approve of President Fillmore’s performance in oﬁ'ioe?
{c) Do you favor the Electoral College system?
A group of 1000 people is polled. Assume that the answer to each question must
be either “yes™ or “no.” It is found that:

550 people answer “‘yes” to the third question and 450 answer *“no.’

325 people answer “yes” exactly twice; that is, their responses contain two

“yeses” and one *
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100 people answer “yes” to all three questions.

125 registered Whigs approve of Fillmore’s performance.

How many of those who favor the Electoral College system do not approve
of Filimore’s performance, and in addition are not registered Whigs? HINT:
Draw a Venn diagram.

4. If A and B are events in a sample space, define 4 — B as the set of points which
belong to 4 but not to B; thatis, A — B = A N B°. Establish the following.
@ANB—~-C)=ANB)—(A4NC0)
b)A-BYC)=(A4-B)-C
Isis truethat (4 — BV C =(4 vV C) — B?

S. Let Q be the reals. Establish the following.

) 1 © F 1
(a,b) = U(a,b—;J = U[a+;,b)

N=l N=1
-3 S A - 1
@ 61= Q) [ab+3) = A7 5]

6. If 4 and B are disjoint events, are 4° and B¢ disjoint? Are AN Cand BN C
disjoint ? What about 4 U C and B U C?

7. Ay € Ayq <« -+ < Ay, show that (\2, A; = A, UL, 4; = 4,.

8. Suppose that 4;, 4, . . . is a sequence of subsets of Q, and we know that for
each n, (Y2, A4, is not empty. Is it true that (2, 4, is not empty? (A related
question about real numbers: if, for each n, we have z;;l a; < b, is it true that

® ?
0@ <b7)

9. If A, By, B, ... are arbitrary events, show that
AnUB)=UUNB)
i i

This is the distributive law with infinitely many factors.

1.3 PROBABILITY

We now consider the assignment of probabilities to events. A technical
complication arises here. It may not always be possible to regard all subsets
of Q as events. We may discard or fail to measure some of the information in
the outcome corresponding to the point w € Q, so that for a given subset
A of Q, it may not be possible to give a yes or no answer to the question
“Is w € A?” For example, if the experiment involves tossing a coin five times,
we may record the results of only the first three tosses, so that 4 = {at least
four heads} will not be “measurable”; that is, membership of w € 4 cannot
be determined from the given information about w.

In a given problem there will be a particular class of subsets of Q called the
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“class of events.” For reasons of mathematical consistency, we require that
the event class & form a sigma field, which is a collection of subsets of Q
satisfying the following three requirements.

Qe F (1.3.1)

Ay, Ay, ...€F  implies Ud,es (1.3.2)

n=1

That is, & is closed under finite or countable union.
AeZF implies A°eF (1.3.3)

That is, & is closed under complementation.

Notice that if 4,, 4,,...€ %, then 4,°, 4,°,...€F by (1.3.3); hence
Ui 4.° € F by (1.3.2). By the DeMorgan laws, 2 ; 4, = (U2, 4,9°;
hence, by (1.3.3), N, 4, € #. Thus & is closed under finite or countable
intersection. Also, by (1.3.1) and (1.3.3), the empty set & belongs to #.

Thus, for example, if the question “Did A4,, occur 7" has a definite answer
forn=1,2,...,s0 do the questions “Did at least one of the 4, occur?”’
and “Did all the 4, occur?”’

Note also that if we apply the algebraic operations of Section 1.2 to sets in
&, the new sets we obtain still belong to &

In many cases we shall be able to take & = the collection of all subsets
of Q, so that every subset of Q is an event. Problems in which & cannot be
chosen in this way generally arise in uncountably infinite sample spaces;
for example, { = the reals. We shall return to this subject in Chapter 2.

We are now ready to talk about the assignment of probabilities to events.

If A € #, the probability P(4) should somehow reflect the long-run relative
frequency of 4 in a large number of independent repetitions of the experi-
ment. Thus P(4) should be a number between 0 and 1, and P(Q) should be 1.

Now if 4 and B are disjoint events, the number of occurrences of 4 U B
in n performances of the experiment is obtained by adding the number of
occurrences of 4 to the number of occurrences of B. Thus we should have

P(4 U B) = P(4) + P(B) - if 4 and B are disjoint
and, similarly,

P4, V- UA)=IP4,) ifA,...,A,aredisjoint
g=1

For mathematical convenience we require that

P( ,91 A,,) = élP(A,,)

when we have a countably infinite family of disjoint events 4;, A,, . ...
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The assumption of countable rather than simply finite additivity has not
been convincingly justified physically or philosophically; however, it leads
to a much richer mathematical theory.

A function that assigns a number P(4) to each set 4 in the sigma field &
is called a probability measure on &, provided that the following conditions

are satisfied.

P(A) >0 foreverydeHF (1.3.9
PQ) =1 (1.3.5)

If A, 4,, ... are disjoint sets in &, then
P(A; U Ay U+ ++) = P(4y) + P(dg) + -+~ (1.3.6)

We may now give the underlying mathematical framework for probability
theory. ‘

DEFINITION. A probability space is a triple (, #, P), where Q is a set,
Z asigma field of subsets of 2, and P a probability measure on &.

We shall not, at this point, embark on a general study of probability
measures. However, we shall establish four facts from the definition.
(Al sets in the arguments to follow are assumed to belong to #.)

1. P(z)=0 (1.3.7)

PROOF. A U & = A; hence P(4 U @) = P(A). But Aand & are disjoint
and so P(4 U @) = P(4) + P(&). Thus P(4) =P(4) + P(2); conse-
quently P(&) = 0. ' '

2. P(A U B) = P(4) + P(B) — P(4 N B) (1.3.8)

PrROOF. A4 = (4 N B) U (4 N B°), and these sets are disjoint (see Figure
1.2.4). Thus P(4) = P(4 N B) + P(4 N B°). Similarly P(B) = P(4 N B) +
P(A4° N B). Thus P(4) + P(B) — P(4 N B) = P(A N B)+ P(4 N B°) +
P(4° N B) = P(4 U B). Intuitively, if we add the outcomes in 4 to those in
B, we have counted those in 4 N B twice; subtracting the outcomes in
A N B yields the outcomes in 4 U B.

3. If B < A4, then P(B) < P(A); in fact,
P(A — B) = P(4) — P(B) (1.3.9)
where 4 — B is the set of points that belong to 4 but not to B.

PROOF. P(A4) = P(B) + P(A — B), since B < A (see Figure 1.3.1), and
the result follows because P(4 — B) > 0. Intuitively, if the occurrence of B
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FiGure 1.3.1

always implies the occurrence of 4, 4 must occur at least as often as B in
any sequence of performances of the experiment.

4 P(A; U A, U---) < P(4) + P(dg) + - -+ (1.3.10)

That is, the probability that at least one of a finite or countably infinite
collection of events will occur is less than or equal to the sum of the prob-
abilities ; note that, for the case of two events, this follows from P(4 U B) =
P(4) + P(B) — P(4 N B) < P(4) + P(B).

Proor. We make use of the fact that any union may be written as a
disjoint union, as follows.

A UAU =4, U  NA) U NA NA)U--- U
(A4° N4 N N4, NA)U -+ (13.11)

To see this, observe that if # belongs to the set on the right then z € 4,° N
<= N A5 3 N A, for some n; hence € 4,. Thus z belongs to the set on the
left. Conversely, if « belongs to the set on the left, then x € 4, for some n.
Let n, be the smallest such n. Thenz€ 4,° N +-- N4 _; N4, ,and so =
belongs to the set on the right. Thus

P(A, WA, U--)=3P4, N NA,; NA,)LDP(4,)

n=1 n=Y

using (1.3.9); notice that

AN NA, N4, <A,

ReMARks. The basic difficulty with the classical and frequency definitions
of probability is that their approach is to try somehow to prove
mathematically that, for example, the probability of picking a heart
from a perfectly shuffled deck is 1/4, or that the probability of an
unbiased coin coming up heads is 1/2. This cannot be done. All we
can say is that if a card is picked at random and then replaced, and the
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process is repeated over and over again, the result that the ratio of
hearts to total number of drawings will be close to 1/4 is in accord
with our intuition and our physical experience. For this reason we
should assign a probability 1/4 to the event of obtaining a heart, and
similarly we should assign a probability 1/52 to each possible outcome
of the experiment. The only reason for doing this is that the con-
sequences agree with our experience. If you decide that some mysterious
factor caused the ace of spades to be more likely than any other card,
you could incorporate this factor by assigning a higher probability to
the ace of spades. The mathematical development of the theory would
not be affected; however, .the conclusions you might draw from
this assumption would be at variance with experimental results.

One can never really use mathematics to prove a specific physical
fact. For example, we cannot prove mathematically that there is a
physical quantity called “force.” What we can do is postulate a
mathematical entity called “force” that satisfies a certain differential
equation. We can build up a collection of mathematical results that,
when interpreted properly, provide a reasonable description of certain
physical phenomena (reasonable until another mathematical theory is
constructed that provides a better description). Similarly, in probability
theory we are faced with situations in which our intuition or some
physical experiments we have carried out suggest certain results.
Intuition and experience lead us to an assignment of probabilities to
events. As far as the mathematics is concerned, any assignment of
probabilities will do, subject to the rules of mathematical con-
sistency. However, our hope is to develop mathematical results that,
when interpreted and related to physical experience, will help to
make precise such notions as “the ratio of the number of heads to the
total number of observations in a very large number of independent
tosses of an unbiased coin is very likely to be very close to 1/2.”

We emphasize that the insights gained by the early workers in prob-
ability are not to be discarded, but instead cast in a more precise
form.

PROBLEMS

1. Write down some examples of sigma fields other than the collection of all
subsets of a given set Q.

2. Give an example to show that P(4 — B) need not equal P(4) — P(B)if B is not
a subset of 4.



